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a b s t r a c t

The low-temperature magnetization of a film was analyzed by the use of exact Bose
representation of spin operators that does not suffer from the presence of unphysical states.
The magnetization of thin films has exponentially small temperature correctness, so that
Dyson’s proof about exponentially small correction coming from two bosons at ideal lattice
point cannot be used in film analyses. The main conclusions of this work are that magnetic
lattice of a thin film is more rigid than the macroscopic lattice and that the autoreduction
process (the three layer film divides into two layer subfilms) takes place in the film.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

The problem of operators with mixed kinematics arose 80 years ago. Bosons and fermions have clean kinematics while
spin operators [1], Pauli operators and quasi-Pauli operators [1–6] havemixed kinematics (their kinematics is a combination
of Bose and Fermi kinematics). Mixed kinematics leads to statistical problems (the calculation of mean values of operator
products) and correspondingly to thermodynamical problems. Since thermodynamics deals with measurable quantities,
correct evaluation of statistical means is necessary.
At first the problem of mixed kinematics and corresponding mixed statistics arose in quantum theory of magnetism.

All attempts to solve this problem were based on the idea of finding an adequate boson representation of spin operators
which would give correct statistical means. Following the appearance of lasers the interaction between optical excitations
became topical. The original operators in the Hamiltonian of optical excitations (Pauli and quasi-Pauli operators) hadmixed
kinematics and statistics too, and boson representations of these operators were necessary for the explanation of nonlinear
optical effects, such as energy shift in optical spectra and two- and three-photon absorption [7,8].
A short review of attempts concerning the problem of mixed kinematics is presented in the first section. The second

section is dealing with the problem of the low-temperaturemagnetization in thin films and the results of the second section
are summarized in the conclusion.
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1. A short review of problems concerned with mixed kinematics

The problem of the low-temperature magnetization of Heisenberg ferromagnet was started by Bloch [9] who
approximated Heisenberg isotropic spin Hamiltonian with quadratic boson form. The Hamiltonian of Heisenberg
ferromagnet is given by:

H = SJ0
∑
En

(
S − Sz

En

)
−
1
2

∑
En, Em

IEn, EmS−En S
+

En −
1
2

∑
En, Em

IEn, Em
(
S − Sz

En

) (
S − Sz

Em

)
(1.1)

where S+ = Sx + iSy, S+ = Sx + iSy are spin operators, are exchange integrals and J0 =
∑
El IEl. The spin operators obey the

following commutation relations:[
S+, S−

]
= 2Sz;

[
S+, Sz

]
= −S+;

[
S−, Sz

]
= S−. (1.2)

Bloch used boson representation of spin operators:

S+
En =
√
2SBEn; S−

En =
√
2SB+
En ; S − Sz

En = B
+

En BEn. (1.3)

and obtained equivalent boson Hamiltonian:

H = SJ0
∑
En

B+
En BEn − S

∑
En, Em

IEn, EmB+En B Em. (1.4)

By diagonalisation of Hamiltonian (1.4), he found the dispersion law E = S
(
J0 − JEk

)
where JEk =

∑
Em I0 Eme

iEk Em and using it
he obtained the following expression for magnetization:

σ =
〈Sz〉
S
= 1−

1
S
ζ3/2τ

3/2
; τ =

Θ

2π I
;Θ = kBT (1.5)

which is called ‘‘Bloch’s 3/2 law’’. The Riemann’s ζ function is given by:

ζp =

∞∑
n=1

1
np
. (1.6)

The next step in the theory of low-temperature magnetization was done by Holstein and Primakoff [4], who used the
following boson representation for spin operators:

S+ =
√
2S

√
1−

B+B
2S
B; S− =

√
2SB+

√
1−

B+B
2S

Sz = S − B+B.
(1.7)

Using this representation of spin operators, they obtained the expression for low-temperature magnetization:

σ = σh + σah (1.8)

where

σh = 1− 2ζ3/2τ 3/2 −
3π
2
ζ5/2τ

5/2
−
33π2

16
ζ7/2τ

7/2
+ O

(
τ 9/2

)
, (1.9)

and

σah = −6πζ3/2ζ5/2τ 4. (1.10)

The terms in formula (1.9) are coming from expanding the dispersion law in powers of magnitude
∣∣∣Ek∣∣∣ of Ek up to k6 while

anharmonic correction is the consequence of the interaction between spin waves.
The result (1.8)–(1.10) was correct but the boson representation of spin operators, which is correct only if number of

bosons at one lattice point is maximally equal to 2S arose discussions concerning the contributions of so-called ‘‘unphysical
states’’, i.e. the states with more than 2S boson per lattice point.
The completed theory of the low-temperature magnetization was given by Dyson [10,11]. He proved that the states with

more than one boson at one lattice point involve exponentially small contributions in the low-temperature magnetization.
Using this proof, he obtained that Holstein and Primakoff’s result was correct.
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Finally, the discussions about ‘‘unphysical states’’ were put ad acta by the appearance of Agranovich–Toshich [3] boson
representation of spin operators for spin operators S = 1/2:

S+ =

[
∞∑
ν=0

(−2)ν

(1+ ν)!
B+νBν

] 1
2

B; S− = B+
[
∞∑
ν=0

(−2)ν

(1+ ν)!
B+νBν

] 1
2

;

1
2
− Sz =

∞∑
ν=0

(−2)ν

(1+ ν)!

(
B+
)ν+1 Bν+1. (1.11)

and by exact boson representation of quasi-Pauli operators [5]. It should be noticed that boson infinite series (1.11) satisfy
commutation rules (1.2) for an arbitrary number of bosons. Using the representation (1.11), the exact results for the low-
temperature ordering parameter of antiferromagnet was determined [12] and the exact result for magnetization in case
S > 1/2 was found in [6]. The correct result of Holstein–Primakoff’s formula (1.8) was obtained in [13].
Using the formula (1.11) Agranovich and Toshich predicted the possibility of Bose condensation of Frenkel excitons. The

similar idea was applied to ferromagnet in strong magnetic field µBH >> I [14] and the Bose condensation of spin waves
was predicted. This prediction has been recently proved experimentally for YIG ferromagnet films in [15].
The exact Bose representation of spin operators (1.11) will be applied for the calculation of magnetization of ultrathin

ferromagnet films with S = 1/2.
Ending this review of the low-temperature problems in determining magnetization, we quote the leading correction

which is given by Bloch’s approach in three layer film. This correction is proportional to τZ1
( 1
4πτ

)
, where Zp (q) =

∑
∞

n=1
e−nq
np

and it is clear that it is exponentially small.

2. Low-temperature magnetization in three layer magnetic films with spin S = 1/2

The interest in magnetic problems has increased recently [16–24], but nowhere has the problem of broken symmetry
magnetic structures been in the foreground.
We shall analyze the three layer magnetic film with spin S = 1/2 cut off in z direction from simple cubic ideal structure.

The more compact and clearer formulae will be obtained if we substitute spin operators with Pauli operators in accordance
with the following formulae:

S+ = P, S− = P+;
1
2
− Sz = P+P;

[
PEn, P+Em

]
= 1− 2P+

En PEn;
(
P+
En

)2
= (PEn)2 = 0 (2.1)

Using (2.1) and the nearest neighbour approximation for a simple cubic structure, we obtain the Hamiltonian of three
layer film in the following form:

H =
1
2

∑
En

(
IEn,En+Ea + IEn,En−Ea + IEn,En+Ea + IEn,En−Ea + IEn,En+Ea + IEn,En−Ea

)
P+
En PEn −

1
2

∑
En

P+
En

(
IEn,En+EaPEn+Ea + IEn,En−EaPEn−Ea

+ IEn,En+EaPEn+Ea + IEn,En−EaPEn−Ea + IEn,En+EaPEn+Ea + IEn,En−EaPEn−Ea
)
−
1
2

∑
En

P+
En PEn

(
IEn,En+EaP+En+EaPEn+Ea + IEn,En−EaP

+

En−EaPEn−Ea

+ IEn,En+EaP+En+EaPEn+Ea + IEn,En−EaP
+

En−EaPEn−Ea + IEn,En+EaP
+

En+EaPEn+Ea + IEn,En−EaP
+

En+EaPEn−Ea
)

(2.2)

where Ea connects the nearest neighbours.
In formula (2.2) the boundary conditions must be taken into account on the surfaces 0 and 2. It means that boundary

conditions are:

Inx,ny,0;nx,ny,−1 = Inx,ny,Nz ;nx,ny,Nz+1 = 0. (2.3)

The other exchange integrals will be denoted by I .
The analysis will be carried out by means of the Pauli–Green function

ΓEn, Em (t) = θ (t)
〈[
PEn (t) , P+Em (0)

]〉
≡ 〈〈PEn (t) |P+Em (0)〉〉, (2.4)

where θ (t) is aHeaviside step-function. DifferentiatingΓEn, Em (t)with respect to t and taking into account that ṖEn = 1
ih̄ [PEn,H],

we obtain the equation for Pauli–Green function ΓEn, Em (t):

ih̄
d
dt
〈〈PEn (t) |P+Em (0)〉〉 = ih̄δ (t) δEn, Em

(
1− 2〈P+

En PEn〉
)
+ 〈〈[PEn,H] t |P

+

Em (0)〉〉. (2.5)
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Further steps in the analysis are the following:

1. In accordance with (1.11) and (2.1), Pauli operators will be substituted with:

PEn = BEn − B+En BEnBEn; P+
En = B

+

En − B
+

En B
+

En BEn; (2.6)

P+
En PEn = B

+

En BEn −
(
B+
En

)2 B2
En

in the Green function 〈〈[PEn,H]t |P
+

Em (0)〉〉 and in correlation function, while in the higher order Green functions of the type
〈〈P+
Ea (t) PEa (t) PEb (t) |P

+

Ec (0)〉〉will be substituted with Bose operators, i.e. it will be taken that P = B.
2. Applying Wick’s theorem [25], we can write down:

〈〈PEn (t) |P+Em (0)〉〉 ≈ 〈〈
(
BEn (t)− B+En (t) BEn (t) BEn (t)

)
|
(
B+
Em (0)− B

+

Em (0) B
+

Em (0) BEn (0)
)
〉〉

≈ 〈〈BEn (t) |B+Em (0)〉〉 − 〈〈B
+

En (t) BEn (t) BEn (t) |B
+

Em (0)〉〉 − 〈〈BEn (t) |B
+

Em (0) B
+

Em (0) BEn (0)〉〉

≈ 〈〈BEn (t) |B+Em (0)〉〉 − 2〈B
+

En BEn〉
(0)
〈〈BEn (t) |B+Em (0)〉〉 − 2〈B

+

EmB Em〉
(0)
〈〈BEn (t) |B+Em (0)〉〉. (2.7)

It should be noticed that the higher order Green functions of the type 〈〈B+BB|B+B+B〉〉 are rejected, since they are
proportional to the square of boson concentration 〈B+B〉.

Inserting the formulae obtained by the application of Wick’s theorem for bosons into (2.5), applying the boundary
conditions (2.3), and using the transformation for the boson Green function GEn, Em (t) = 〈〈BEn (t) |B+Em (0)〉〉 in which translatory
invariance in x, y plane is taken into account:

Gnx,ny,nz ;mx,my,mz (t) = 〈〈Bnx,ny,nz (t) |B
+

mx,my,mz (0)〉〉

=
1
NxNy

∑
kx,ky

eiakx(nx−mx)+iaky(ny−my)
∫
+∞

−∞

dωe−iωtαnz ,mz
(
kx, ky, ω

)
. (2.8)

we obtain the following system of difference equations for the function αnz ,mz
(
kx, ky, ω

)
:

nz = 1 J
(
α2,mz + α0,mz

)
+ ρα1,mz =

ih̄
2π

(
1+ 2〈B+B〉(0)

)
δ1,mz ; (2.9)

nz = 0 (J −∆J) α1,mz + (ρ +∆ρ) α0,mz =
ih̄
2π

(
1+ 2〈B+B〉(0)

)
δ0,mz ; (2.10)

nz = 2 (J −∆J) α1,mz + (ρ +∆ρ) α2,mz =
ih̄
2π

(
1+ 2〈B+B〉(0)

)
δ2,mz . (2.11)

The notations in upper equations are the following:

ρ = E − 2I
(
sin2

akx
2
+ sin2

aky
2

)
− I +

1
2
I (F1 + 3F2)− 2IΦ2;

∆ρ =
1
2
I −
1
2
I (F1 + F2)−

3
2
IΦ2; ∆Φ = Φ1 − Φ2;

J =
1
2
I (1− 2F2) ; ∆J =

1
4
I∆F; ∆F = F1 − F2

(2.12)

where the functions F andΦ are given by:

Fλ =
1
NxNy

∑
kx,ky

1

eE
(0)
kx,ky,λ − 1

= τZ1

(
2λ− 1
4πτ

)
+
π

2
τ 2Z2

(
2λ− 1
4πτ

)
+ O

(
τ 3Z

)
;
2λ− 1
2

I
Θ
=
2λ− 1
4πτ

(2.13)

and

Φλ =
1
NxNy

∑
qx,qy

M
(
kx, ky, qx, qy

)
eE
(0)
qx,qy,λ − 1

= −ak
[
πτ 3/2Z3/2

(
2λ− 1
4πτ

)
−
27
16
π2τ 5/2Z5/2

(
2λ− 1
4πτ

)]
− (ak)2

[
3
4
πτ 2Z2

(
2λ− 1
4πτ

)
−
19
16
π2τ 3Z3

(
2λ− 1
4πτ

)]
+ (ak)3

[
1
8
πτ 3/2Z3/2

(
2λ− 1
4πτ

)
−
95
768

π2τ 5/2Z5/2

(
2λ− 1
4πτ

)]
+ O

(
τ 7/2Z

)
(2.14)
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where

E(0)kx,ky,λ = 2I
(
sin2

akx
2
+ sin2

aky
2
+ sin2

λπ

6

)
; λ = 1, 2 (2.15)

and

M
(
kx, ky, qx, qy

)
= cos akx + cos aky + cos aqx + cos aqy − 2− cos a (kx − qx)− cos a

(
ky − qy

)
. (2.16)

It can be easily shown that all Eqs. (2.9)–(2.11) after the substitution

αnz ,mz =

2∑
λ=1

amz ,λSnz,λ , (2.17)

where

Snz ,λ = sin (nz + 1) ϕλ + Yλ sin nzϕλ;

Yλ = −1+
[(
1+ cosϕ(0)λ

)
∆F + 3∆Φ

] (2.18)

reduce to the unique one

2∑
λ=1

(2J cosϕλ + ρ) amz ,λ
(
kx, ky, ω

)
Snz ,λ =

ih̄
2π
δnz ,mz ; nz,mz ∈ {0, 1, 2} (2.19)

if the parameters ϕλ satisfy the following equation:

1
2
sin 3ϕλ − sin 3ϕλ cosϕλ + sin 2ϕλ cosϕλ −

1
2
sinϕλ +

5
√
3
8
∆F +

3
√
3
2
∆Φ = 0. (2.20)

The Kronecker symbol in (2.19) will be taken in the following form:

δnz ,mz =

2∑
λ=1

Snz ,λTmz ,λ. (2.21)

This system of algebraic equations enables us to calculate all introduced functions Tmz ,λ.
Substituting (2.21) in (2.19) and taking that

amz ,λ
(
kx, ky, ω

)
= bkx,ky,λ (ω) Tmz ,λ (2.22)

we reduce (2.19) into

bkx,ky,λ (ω) =
i
2π
1+ 2〈B+B〉(0)

ω − ω
(1)
kx,ky,λ

, (2.23)

where

ωkx,ky,λ =
1
h̄
E(1)kx,ky,λ;

E(1)kx,ky,λ = 2I
(
sin2

akx
2
+ sin2

aky
2
+ sin2

ϕλ

2

)
−
1
2
IF1 −

1
2
IF2

(
3− 4 cos

λπ

3

)
+ 2IΦ2.

(2.24)

Combining (2.8), (2.17), (2.22), and inversing Fourier’s time-frequency transformation of the Green function (2.8), we
obtain:

Gnx,ny,nz ;mx,my,mz (ω) =
i
(
1+ 2〈B+B〉(0)

)
2π

1
NxNy

·

∑
kx,ky

2∑
λ=1

eiakx(nx−mx)+iaky(ny−my) ·
Snz ,λTmz ,λ
ω − ω

(0)
kx,ky,λ

(2.25)

in this formula the unknown functions Tmz ,λ figure. They can be found from (2.21) putting δnz ,mz = 1 for nz = mz and
δnz ,mz = 0 for nz 6= mz .
Having formula (2.25), we can find the spectral intensity, correlation function and boson concentrations in the first

approximation. We shall quote the first order boson concentration for subfilm (0, 1), only:

〈B+B〉(1)01 =
(
1+ 2〈B+B〉(0)

) 1
NxNy

·

∑
kx,ky

2∑
λ=1

S01nz ,λT
01
nz ,λ

e
E(1)kx,ky,λ

Θ − 1

. (2.26)
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Fig. 1. Schematic presentation of autoreduction of three layer film into two equivalent two layer films.

Now we shall determine the ordering parameter and estimate the remaining order of magnitude. The expression for σ
is given by:

σ = 1− 2〈P+P〉 = 1− 2〈B+B〉(1) + 4
[
〈B+B〉(0)

]2
. (2.27)

Taking into account (2.26), we can write down:

σ = 1−
2
NxNy

∑
kx,ky

2∑
λ=1

Snz ,λTnz ,λ

e
E(1)kx,ky,λ

Θ − 1

. (2.28)

From formula (2.28) the term proportional 〈B+B〉(0)
(
〈B+B〉(1) − 〈B+B〉(0)

)
was rejected since it is extremely small.

The fact that Eq. (2.20) has only two real solutions in interval (0, π) is of great importance. Since the number of film
layers has three values, the transformation from configuration space to momentum space is not isomorphic. It is of the type
3→ 2 and this means that the autoreduction takes place in the film [26–30]. The spin wave excitations exist in two layers
only. It can be (0, 1) and (1, 2) sets of layers. The set (0, 2) is incompatible with the nearest neighbour approximationwhich
was applied. Geometrically, it is clear that sets (0, 1) and (1, 2) are completely equivalent (see Fig. 1).
It means that it is enough to examine magnetization in one of the mentioned subfilms. It was done for subfilm (0, 1) and

it was found that magnetizations of layers are approximately given by:

σ (nz = 0) = σh (nz = 0)+ σa (nz = 0) (2.29)

where

σh (nz = 0) = 1− 2τZ1

(
1
4πτ

)
(2.30)

and

σa (nz = 0) = aτ (2.31)

where a is

a =
1
8π
Z0

(
1
4πτ

)
Z1

(
1
4πτ

)
−
9
8π
Z0

(
1
4πτ

)
Z1

(
3
4πτ

)
. (2.32)

The magnetization for layer nz = 1 is given by

σ (nz = 1) = σh (nz = 1)+ σa(nz = 1) (2.33)

where

σh (nz = 1) = 1− 2τZ1

(
3
4πτ

)
(2.34)

and

σa (nz = 1) ≈ bτ (2.35)

where

b =
11
8π
Z0

(
3
4πτ

)
Z1

(
1
4πτ

)
+
61
8π
Z0

(
3
4πτ

)
Z1

(
3
4πτ

)
. (2.36)

In formulae (2.31)–(2.34) only the leading terms of magnetization are quoted.
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3. Conclusion

Concluding this analysis, we would like to emphasize the following:

1. Magnetizations of layers 0 and 1 differ. It is the consequence of broken symmetry.
2. The temperature corrections are exponentially small due to the presence of zeta functions Zp

( 2λ−1
4πτ

)
.

3. The autoreduction of the n→ n−1 type takes place in the film reducing the three layer ferromagnet into two layer one.
4. In connection with experimental fact that Bose condensation takes place of spin waves in ferromagnet film YIG, our
intention is to examine theoretically the behaviour of thin magnetic films in extremely strong magnetic fields.
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